Enhanced biDimensional pIc: an electrostatic/magnetostatic particle-in-cell code for plasma based systems

Author:

Gallina G.ORCID,Magarotto M.ORCID,Manente M.,Pavarin Daniele

Abstract

EDI (enhanced biDimensional pIc) is a two-dimensional (2-D) electrostatic/magnetostatic particle-in-cell (PIC) code designed to optimize plasma based systems. The code is built on an unstructured mesh of triangles, allowing for arbitrary geometries. The PIC core is comprised of a Boris leapfrog scheme that can manage multiple species. Particle tracking locates particles in the mesh, using a fast and simple priority-sorting algorithm. A magnetic field with an arbitrary topology can be imposed to study the magnetized particle dynamics. The electrostatic fields are then computed by solving Poisson’s equation with a a finite element method solver. The latter is an external solver that has been properly modified in order to be integrated into EDI. The major advantage of using an external solver directly incorporated into the EDI structure is its strong flexibility, in fact it is possible to couple together different physical problems (electrostatic, magnetostatic, etc.). EDI is written in C, which allows the rapid development of new modules. A big effort in the development of the code has been made in optimization of the linking efficiency, in order to minimize computational time. Finally, EDI is a multiplatform (Linux, Mac OS X) software.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Reference67 articles.

1. Magnet calculations at the Grenoble High Magnetic Field Laboratory

2. An object-oriented electromagnetic PIC code

3. Simulation of beams or plasmas crossing at relativistic velocity

4. A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges

5. Umeda, T. 2003 Study on nonlinear processes of electron beam instabilities via computer simulations. PhD thesis, Department of Communications and Computer Engineering Graduate School of Informatics Kyoto University, Kyoto, Japan.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3