MHD stability and disruptions in the SPARC tokamak

Author:

Sweeney R.ORCID,Creely A. J.ORCID,Doody J.,Fülöp T.ORCID,Garnier D. T.ORCID,Granetz R.ORCID,Greenwald M.ORCID,Hesslow L.ORCID,Irby J.,Izzo V. A.ORCID,La Haye R. J.,Logan N. C.ORCID,Montes K.ORCID,Paz-Soldan C.ORCID,Rea C.ORCID,Tinguely R. A.ORCID,Vallhagen O.ORCID,Zhu J.

Abstract

SPARC is being designed to operate with a normalized beta of $\beta _N=1.0$ , a normalized density of $n_G=0.37$ and a safety factor of $q_{95}\approx 3.4$ , providing a comfortable margin to their respective disruption limits. Further, a low beta poloidal $\beta _p=0.19$ at the safety factor $q=2$ surface reduces the drive for neoclassical tearing modes, which together with a frozen-in classically stable current profile might allow access to a robustly tearing-free operating space. Although the inherent stability is expected to reduce the frequency of disruptions, the disruption loading is comparable to and in some cases higher than that of ITER. The machine is being designed to withstand the predicted unmitigated axisymmetric halo current forces up to 50 MN and similarly large loads from eddy currents forced to flow poloidally in the vacuum vessel. Runaway electron (RE) simulations using GO+CODE show high flattop-to-RE current conversions in the absence of seed losses, although NIMROD modelling predicts losses of ${\sim }80$  %; self-consistent modelling is ongoing. A passive RE mitigation coil designed to drive stochastic RE losses is being considered and COMSOL modelling predicts peak normalized fields at the plasma of order $10^{-2}$ that rises linearly with a change in the plasma current. Massive material injection is planned to reduce the disruption loading. A data-driven approach to predict an oncoming disruption and trigger mitigation is discussed.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3