Theory of gradient drift instabilities in low-temperature, partially magnetised plasmas

Author:

Hara KentaroORCID,Mansour Adnan R.ORCID,Tsikata SedinaORCID

Abstract

A fluid dispersion theory in partially magnetised plasmas is analysed to examine the conditions under which large-wavelength modes develop in Penning-type configurations, that is, where an electric field is imposed perpendicular to a homogeneous magnetic field. The fluid dispersion relation assuming a slab geometry shows that two types of low-frequency, gradient drift instabilities occur in the direction of the $\boldsymbol {E} \times \boldsymbol {B}$ and diamagnetic drifts. One type of instability, observed when the equilibrium electric field and plasma density gradient are in the same direction, is similar to the classic modified Simon–Hoh instability. A second instability is found for conditions in which (i) the diamagnetic drift is in the direction opposite to the $\boldsymbol {E} \times \boldsymbol {B}$ drift and (ii) the magnitude of the diamagnetic drift is sufficiently larger than the electron thermal speed. The present fluid dispersion theory suggests that the rotating spokes driven by such fluid instabilities propagate in the same direction as the diamagnetic drift, which can be in the same direction as or opposite to the $\boldsymbol {E} \times \boldsymbol {B}$ drift, depending on the plasma conditions. This finding may account for the observation, in some plasma devices, of the rotation of large-scale structures in both the $\boldsymbol {E} \times \boldsymbol {B}$ and $-\boldsymbol {E} \times \boldsymbol {B}$ directions.

Funder

Air Force Office of Scientific Research

Office of Naval Research

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Reference58 articles.

1. STEREO and Wind observations of intense cyclotron harmonic waves at the Earth's bow shock and inside the magnetosheath

2. An overview of discharge plasma modeling for Hall effect thrusters

3. Hall thruster plasma fluctuations identified as the E×B electron drift instability: Modeling and fitting on experimental data

4. Instability of Penning-Type Discharges

5. Raitses, Y. , Kaganovich, I.D. & Smolyakov, A. 2015 Effects of the gas pressure on low frequency oscillations in $E\times B$ discharges. In Proceedings of Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, pp. IEPC–2015–307.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3