Collisional effects on resonant particles in quasilinear theory

Author:

Catto Peter J.ORCID

Abstract

A careful examination of the effects of collisions on resonant wave–particle interactions leads to an alternate interpretation and deeper understanding of the quasilinear operator originally formulated by Kennel & Engelmann (Phys. Fluids, vol. 9, 1966, pp. 2377–2388) for collisionless, magnetized plasmas, and widely used to model radio frequency heating and current drive. The resonant and nearly resonant particles are particularly sensitive to collisions that scatter them out of and into resonance, as for Landau damping as shown by Johnston (Phys. Fluids, vol. 14, 1971, pp. 2719–2726) and Auerbach (Phys. Fluids, vol. 20, 1977, pp. 1836–1844). As a result, the resonant particle–wave interactions occur in the centre of a narrow collisional boundary when the collision frequency $\unicode[STIX]{x1D708}$ is very small compared to the wave frequency $\unicode[STIX]{x1D714}$ . The diffusive nature of the pitch angle scattering combined with the wave–particle resonance condition enhances the collision frequency by $(\unicode[STIX]{x1D714}/\unicode[STIX]{x1D708})^{2/3}\gg 1$ , resulting in an effective resonant particle collisional interaction time of $\unicode[STIX]{x1D70F}_{\text{int}}\sim (\unicode[STIX]{x1D708}/\unicode[STIX]{x1D714})^{2/3}/\unicode[STIX]{x1D708}\ll 1/\unicode[STIX]{x1D708}$ . A collisional boundary layer analysis generalizes the standard quasilinear operator to a form that is fully consistent with Kennel–Englemann, but allows replacing the delta function appearing in the diffusivity with a simple integral (having the appropriate delta function limit) retaining the new physics associated with the narrow boundary layer, while preserving the entropy production principle. The limitations of the collisional boundary layer treatment are also estimated, and indicate that substantial departures from Maxwellian are not permitted.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3