Collisional broadening of nonlinear resonant wave–particle interactions

Author:

Catto Peter J.ORCID,Tolman Elizabeth A.ORCID

Abstract

A general procedure for understanding plasma behaviour when resonant wave–particle interactions are the sole destabilizing and transport mechanism or only heating and/or current drive source is highlighted without recourse to involved numerical or analytical treatments. These phenomena are characterized by transport that appears to be collisionless even though collisions play a central role in narrow collisional boundary layers. The order of magnitude estimates, which include nonlinear effects, are shown to provide expressions in agreement with the principal results of recent toroidal Alfvén eigenmode (TAE), toroidal magnetic field ripple, and heating and current drive treatments. More importantly, the retention of nonlinearities leads to new estimates of the alpha particle energy diffusivity at saturation for TAE modes, and the ripple threshold at which superbanana plateau evaluations of alpha particle transport are modified by nonlinear radial drift effects. In addition, the estimates indicate when quasilinear descriptions for heating and current drive will begin to fail. The phenomenological procedure demonstrates that in magnetic fusion relevant plasmas, narrow collisional boundary layers must be retained for resonant wave–particle interactions as they enhance the role of collisions, and make stochastic particle motion unlikely to be more important than other nonlinear processes.

Funder

U. S. Department of Energy

Bezos Membership at the Institute for Advanced Study

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3