Data-driven model for divertor plasma detachment prediction

Author:

Zhu BenORCID,Zhao Menglong,Bhatia Harsh,Xu Xue-qiao,Bremer Peer-Timo,Meyer William,Li Nami,Rognlien Thomas

Abstract

We present a fast and accurate data-driven surrogate model for divertor plasma detachment prediction leveraging the latent feature space concept in machine learning research. Our approach involves constructing and training two neural networks: an autoencoder that finds a proper latent space representation (LSR) of plasma state by compressing the multi-modal diagnostic measurements and a forward model using multi-layer perception (MLP) that projects a set of plasma control parameters to its corresponding LSR. By combining the forward model and the decoder network from autoencoder, this new data-driven surrogate model is able to predict a consistent set of diagnostic measurements based on a few plasma control parameters. In order to ensure that the crucial detachment physics is correctly captured, highly efficient 1D UEDGE model is used to generate training and validation data in this study. The benchmark between the data-driven surrogate model and UEDGE simulations shows that our surrogate model is capable of providing accurate detachment prediction (usually within a few per cent relative error margin) but with at least four orders of magnitude speed-up, indicating that performance-wise, it has the potential to facilitate integrated tokamak design and plasma control. Comparing with the widely used two-point model and/or two-point model formatting, the new data-driven model features additional detachment front prediction and can be easily extended to incorporate richer physics. This study demonstrates that the complicated divertor and scrape-off-layer plasma state has a low-dimensional representation in latent space. Understanding plasma dynamics in latent space and utilising this knowledge could open a new path for plasma control in magnetic fusion energy research.

Funder

U.S. Department of Energy

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3