Conceptual design of initial opacity experiments on the national ignition facility

Author:

Heeter R. F.,Bailey J. E.,Craxton R. S.,DeVolder B. G.,Dodd E. S.,Garcia E. M.,Huffman E. J.,Iglesias C. A.,King J. A.,Kline J. L.,Liedahl D. A.,McKenty P. W.,Opachich Y. P.,Rochau G. A.,Ross P. W.,Schneider M. B.,Sherrill M. E.,Wilson B. G.,Zhang R.,Perry T. S.

Abstract

Accurate models of X-ray absorption and re-emission in partly stripped ions are necessary to calculate the structure of stars, the performance of hohlraums for inertial confinement fusion and many other systems in high-energy-density plasma physics. Despite theoretical progress, a persistent discrepancy exists with recent experiments at the Sandia Z facility studying iron in conditions characteristic of the solar radiative–convective transition region. The increased iron opacity measured at Z could help resolve a longstanding issue with the standard solar model, but requires a radical departure for opacity theory. To replicate the Z measurements, an opacity experiment has been designed for the National Facility (NIF). The design uses established techniques scaled to NIF. A laser-heated hohlraum will produce X-ray-heated uniform iron plasmas in local thermodynamic equilibrium (LTE) at temperatures ${\geqslant}150$ eV and electron densities ${\geqslant}7\times 10^{21}~\text{cm}^{-3}$. The iron will be probed using continuum X-rays emitted in a ${\sim}200$ ps, ${\sim}200~\unicode[STIX]{x03BC}\text{m}$ diameter source from a 2 mm diameter polystyrene (CH) capsule implosion. In this design, $2/3$ of the NIF beams deliver 500 kJ to the ${\sim}6$ mm diameter hohlraum, and the remaining $1/3$ directly drive the CH capsule with 200 kJ. Calculations indicate this capsule backlighter should outshine the iron sample, delivering a point-projection transmission opacity measurement to a time-integrated X-ray spectrometer viewing down the hohlraum axis. Preliminary experiments to develop the backlighter and hohlraum are underway, informing simulated measurements to guide the final design.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3