Solving gyrokinetic systems with higher-order time dependence

Author:

Sharma A. Y.ORCID,McMillan B. F.ORCID

Abstract

We discuss theoretical and numerical aspects of gyrokinetics as a Lagrangian field theory when the field perturbation is introduced into the symplectic part. A consequence is that the field equations and particle equations of motion in general depend on the time derivatives of the field. The most well-known example is when the parallel vector potential is introduced as a perturbation, where a time derivative of the field arises only in the equations of motion, so an explicit equation for the fields may still be written. We will consider the conceptually more problematic case where the time-dependent fields appear in both the field equations and equations of motion, but where the additional term in the field equations is formally small. The conceptual issues were described by Burby (J. Plasma Phys., vol. 82 (3), 2016, 905820304): these terms lead to apparent additional degrees of freedom to the problem, so that the electric field now requires an initial condition, which is not required in low-frequency (Darwin) Vlasov–Maxwell equations. Also, the small terms in the Euler–Lagrange equations are a singular perturbation, and these two issues are interlinked. For well-behaved problems the apparent additional degrees of freedom are spurious, and the physically relevant solution may be directly identified. Because we needed to assume that the system is well behaved for small perturbations when deriving gyrokinetic theory, we must continue to assume that when solving it, and the physical solutions are thus the regular ones. The spurious nature of the singular degrees of freedom may also be seen by changing coordinate systems so the varying field appears only in the Hamiltonian. We then describe how methods appropriate for singular perturbation theory may be used to solve these asymptotic equations numerically. We then describe a proof-of-principle implementation of these methods for an electrostatic strong-flow gyrokinetic system; two basic test cases are presented to illustrate code functionality.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3