Relationship between drift kinetics, gyrokinetics and magnetohydrodynamics in the long-wavelength limit

Author:

McMillan B.F.ORCID

Abstract

Gyrokinetic theories, even ‘global’ models, typically rely on a separation in scale (in perpendicular wavelength) between the fluctuations and the system scale. In such models direct simulation of system-scale dynamics like magnetohydrodynamic (MHD) motion is formally not consistent. Drift-kinetic theory, on the other hand, may be directly applied to model system-scale MHD-ordered behaviour. I review the long-wavelength limit of standard gyrokinetics and drift kinetics to present the relationships between these theories in an elementary fashion. This provides a pathway to global gyrokinetic modelling, resulting in an approach that is structurally similar to kinetic MHD, and I present dynamical equations for solving global field evolution in this framework. Departures from certain earlier global gyrokinetic theories include the appearance of magnetosonic (fast) modes, and the cross-coupling of the parallel and perpendicular currents with perpendicular and parallel magnetic field components. A periodic two-dimensional testcase is outlined as a benchmarking and implementation target, to help clarify practical aspects of these theories, with minimal complexity in terms of boundary conditions, and a proof-of-principle implementation of a field-solver is exhibited. To motivate this work, I first illustrate certain limitations of existing global gyrokinetic frameworks and directly identify how scale separation approximations lead to certain ‘missing’ system-scale field terms in global gyrokinetics, largely as a result of simplifications associated with the field representation in terms of $A_{\|}$ and $B_{\|}$ . As a result, the currents in the gyrokinetic Ampère's law resulting from a gyrokinetic equilibrium distribution do not match the currents implied by Ampère's law in a force-balance MHD equilibrium. I present a simple choice of equilibrium distribution function whose drift-kinetic currents are consistent with MHD currents; a specific Grad–Shafranov equilibrium is used to illustrate the size of the components of the parallel currents.

Funder

Engineering and Physical Sciences Research Council

EUROfusion

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3