Theory of the mutual impedance of two small dipoles in a warm isotropic plasma

Author:

Pottelette R.,Rooy B.,Fiala V.

Abstract

We show theoretically that the electron density and temperature of a plasma could be deduced from the measurements of the transfer impedance between two small dipole antennae, each much shorter than a Debye length, separated by a distance of ten or more Debye lengths. In contrast to the quadripole probe, this ‘double-dipole probe’ relies on not producing perturbations in the plasma, rather than on minimizing their effects. The plasma is assumed to be warm and isotropic, and the motion of the ions is neglected. First, it is shown that, in a Maxwellian plasma, the frequency response of a double-dipole probe is easier to interpret than that of a quadripole probe with the customary square layout. Then, in a second step, the transfer impedance of the former probe is calculated in a Cauchy plasma, and the results are compared with those previously obtained in a Maxwellian plasma. By so doing, we show that, for large distances between the dipoles, the real part of the transfer impedance is sensitive to the form of the tail of the distribution function.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3