Instrumentation for Ionized Space Environments: New High Time Resolution Instrumental Modes of Mutual Impedance Experiments

Author:

Bucciantini L.1ORCID,Henri P.12ORCID,Dazzi P.13ORCID,Wattieaux G.4,Lavorenti F.25,Vallières X.1,Brochot J. Y.1,Colin F.1,Katrougkalou M. C.67ORCID,Vengeons G.1,Lecas T.1,Le Duff O.1

Affiliation:

1. Laboratoire de Physique et Chimie de l’Environnement et de l’Espace (LPC2E) CNRS Université d’Orléans Orléans France

2. Laboratoire Lagrange OCA, UCA CNRS Nice France

3. Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique (LESIA) Paris Observatory Paris France

4. Laboratoire Plasma et Conversion d’Energie (LAPLACE) CNRS Université de Toulouse Toulouse France

5. Dipartimento di Fisica Università di Pisa Pisa Italy

6. Institute de Recherche en Astrophysique et Planétologie (IRAP) Toulouse France

7. Royal Institute of Technology (KTH) Stockholm Sweden

Abstract

AbstractMutual impedance experiments are in situ plasma diagnostic techniques for the identification of the plasma density and the electron temperature. Different versions of mutual impedance instruments were included in past and present space missions (e.g., Rosetta, BepiColombo, JUICE and Comet Interceptor). New versions are currently being devised to fit the strong mass, volume and power constraints on nanosatellite platforms for future multi‐point space missions. In this study, our goal is to define and validate two new instrumental modes (i.e., chirp and multi‐spectral modes) to improve the time resolution of the experiment with respect to typical mutual impedance instrumental modes (i.e., frequency sweep). Higher time resolution measurements are expected to simplify the integration of mutual impedance experiments onboard nanosatellite platforms by facilitating antenna sharing between different experiments. The investigation is performed both (a) numerically, using a 1D‐1V electrostatic full kinetic Vlasov‐Poisson model and, (b) experimentally, with laboratory tests using a vacuum chamber and a plasma source. From a plasma diagnostic point of view, we find that both the chirp and multi‐spectral modes provide measurements identical to the (reference) frequency sweep mode. From an instrumental point of view, multi‐spectral measurements are faster than frequency sweep measurements but they require larger amounts of onboard computing resources (i.e., larger power consumption). Chirp measurements, instead, outperform frequency sweep measurements both in terms of measurement duration (20 times faster) and onboard processor usage (20% less).

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3