Projection-operator methods for classical transport in magnetized plasmas. Part 2. Nonlinear response and the Burnett equations

Author:

Krommes John A.ORCID

Abstract

The time-independent projection-operator formalism of Breyet al. (PhysicaA, vol. 109, 1981, pp. 425–444) for the derivation of Burnett equations is extended and considered in the context of multispecies and magnetized plasmas. The procedure provides specific formulas for transport coefficients in terms of two-time correlation functions involving both two and three phase-space points. It is shown how to calculate those correlation functions in the limit of weak coupling. The results are used to demonstrate, with the aid of a particular non-trivial example, that the Chapman–Enskog methodology employed by Catto & Simakov (CS) (Phys. Plasmas, vol. 11, 2004, pp. 90–102) to calculate the contributions to the parallel viscosity driven by temperature gradients is consistent with formulas previously derived from the two-time formalism by Brey (J. Chem. Phys., vol. 79, 1983, pp. 4585–4598). The work serves to unify previous work on plasma kinetic theory with formalism usually applied to turbulence. Additional contributions include discussions of (i) Braginskii-order interspecies momentum exchange from the point of view of two-time correlations; and (ii) a simple stochastic model, unrelated to many-body theory, that exhibits Burnett effects. Insights from that model emphasize the role of non-Gaussian statistics in the evaluation of Burnett transport coefficients, including the effects calculated by CS that stem from the nonlinear collision operator. Together, Parts 1 and 2 of this series provide an introduction to projection-operator methods that should be broadly useful in theoretical plasma physics.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3