Comparison between mirror Langmuir probe and gas-puff imaging measurements of intermittent fluctuations in the Alcator C-Mod scrape-off layer

Author:

Kube R.ORCID,Theodorsen A.,Garcia O. E.,Brunner D.,LaBombard B.,Terry J. L.

Abstract

Statistical properties of the scrape-off layer plasma fluctuations are studied in ohmically heated plasmas in the Alcator C-Mod tokamak. For the first time, plasma fluctuations as well as parameters that describe the fluctuations are compared across measurements from a mirror Langmuir probe (MLP) and from gas-puff imaging (GPI) that sample the same plasma discharge. This comparison is complemented by an analysis of line emission time-series data, synthesized from the MLP electron density and temperature measurements. The fluctuations observed by the MLP and GPI typically display relative fluctuation amplitudes of order unity together with positively skewed and flattened probability density functions. Such data time series are well described by an established stochastic framework that models the data as a superposition of uncorrelated, two-sided exponential pulses. The most important parameter of the process is the intermittency parameter, $\gamma = {\tau _{d}} / {\tau _{w}}$ , where ${\tau _{d}}$ denotes the duration time of a single pulse and ${\tau _{w}}$ gives the average waiting time between consecutive pulses. Here we show, using a new deconvolution method, that these parameters can be consistently estimated from different statistics of the data. We also show that the statistical properties of the data sampled by the MLP and GPI diagnostic are very similar. Finally, a synthetic GPI signal using only plasma parameters sampled by the MLP shows qualitatively different fluctuation statistics from the measured GPI signal.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3