A three-point velocity estimation method for two-dimensional coarse-grained imaging data

Author:

Losada J. M.1ORCID,Helgeland A. D.1ORCID,Terry J. L.2ORCID,Garcia O. E.1ORCID

Affiliation:

1. Department of Physics and Technology, UiT the Arctic University of Norway 1 , N-9037 Tromsø, Norway

2. MIT Plasma Science and Fusion Center 2 , Cambridge, Massachusetts 02139, USA

Abstract

Time delay and velocity estimation methods have been widely studied subjects in the context of signal processing, with applications in many different fields of physics. The velocity of waves or coherent fluctuation structures is commonly estimated as the distance between two measurement points divided by the time lag that maximizes the cross correlation function between the measured signals, but this is demonstrated to result in erroneous estimates for two spatial dimensions. We present an improved method to accurately estimate both components of the velocity vector, relying on three non-aligned measurement points. We introduce a stochastic process describing the fluctuations as a superposition of uncorrelated pulses moving in two dimensions. Using this model, we show that the three-point velocity estimation method, using time delays calculated through cross correlations, yields the exact velocity components when all pulses have the same velocity. The two- and three-point methods are tested on synthetic data generated from realizations of such processes for which the underlying velocity components are known. The results reveal the superiority of the three-point technique. Finally, we demonstrate the applicability of the velocity estimation on gas puff imaging data of strongly intermittent plasma fluctuations due to the radial motion of coherent, blob-like structures at the boundary of the Alcator C-Mod tokamak.

Funder

UiT Aurora Center Program, UiT the Arctic University of Norway

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3