Kelvin–Helmholtz instability in strongly coupled dusty plasma with rotational shear flows and tracer transport

Author:

Dharodi Vikram S.ORCID,Patel Bhavesh,Das Amita

Abstract

Kelvin–Helmholtz (KH) instability plays a significant role in transport and mixing in various media such as hydrodynamic fluids, plasmas, geophysical flows and astrophysical situations. In this paper, we numerically explore this instability for a two-dimensional strongly coupled dusty plasma medium with rotational shear flows. We study this medium using a generalized hydrodynamic fluid model which treats it as a viscoelastic fluid. We consider the specific cases of rotating vorticity with abrupt radial profiles of rotation. In particular, single-circulation and multi-circulation vorticity shell profiles have been chosen. We observe the KH vortices at each circular interface between two relative rotating flows along with a pair of ingoing and outgoing wavefronts of transverse shear waves. Our studies show that due to the interplay between KH vortices and shear waves in the strongly coupled medium, the mixing and transport behaviour are much better than those of standard inviscid hydrodynamic fluids. In the interest of substantiating the mixing and transport behaviour, the generalized hydrodynamic fluid model is extended to include Lagrangian tracer particles. The numerical dispersion of these tracer particles in a flow provides an estimate of the diffusion in such a medium. We present the preliminary observations of tracer distribution (cluster formation) and diffusion (mean square displacement) across the medium.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3