Comparingcal3and other a posteriori time-scaling approaches in a case study with the pterocephaliid trilobites

Author:

Bapst David W.ORCID,Hopkins Melanie J.

Abstract

AbstractReconstructing the tree of life involves more than identifying relationships among lineages; it also entails accurately estimating when lineages diverged. Paleontologists typically scale cladograms to time a posteriori by direct reference to first appearances of taxa in the stratigraphic record. Some approaches use probabilistic models of branching, extinction, and sampling processes to date samples of trees, such as the recently developedcal3method, which stochastically draws divergence dates given a set of rates for those processes. However, these models require estimates of the rates of those processes, which may be hard to obtain, particularly for sampling. Here, we contrast the use ofcal3and other a posteriori time-scaling approaches by examining a previous study that documented a decelerating rate of morphological evolution in pterocephaliid trilobites. Although aspects of the data set make estimation of branching, extinction, and sampling rates difficult, we use a multifaceted approach to calculate and evaluate the rate estimates needed for applyingcal3. In agreement with previous simulation studies, we find that the choice of phylogenetic dating method impacts downstream macroevolutionary conclusions. We also find contradictory evolutionary inferences between analyses on ancestor–descendant contrasts (based on ancestor trait reconstruction methods) and maximum-likelihood parameter estimates. Ancestral taxon inference incal3corroborates previously hypothesized ancestor–descendant sequences, butcal3suggests greater support for budding cladogenesis than anagenesis. This case study demonstrates the potential and wide applicability of thecal3method and the benefits afforded by choosingcal3over simpler a posteriori time-scaling approaches.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3