Crop Biomass Not Species Richness Drives Weed Suppression in Warm-Season Annual Grass–Legume Intercrops in the Northeast

Author:

Bybee-Finley K. Ann,Mirsky Steven B.,Ryan Matthew R.

Abstract

Intercropping with functionally diverse crops can reduce the availability of resources that could otherwise be used by weeds. An experiment was conducted across 6 site-years in New York and Maryland in 2013 and 2014 to examine the effects of functional diversity and crop species richness on weed suppression. We compared four annual crop species that differed in stature and nitrogen acquisition traits: (1) pearl millet, (2) sorghum sudangrass, (3) cowpea, and (4) sunn hemp. Crops were seeded in monoculture and in three- and four-species mixtures using a replacement design in which monoculture seeding rates were divided by the number of species in the intercrop. Crop and weed biomass were sampled at ~45 and 90 d after planting. At the first sampling date, intercrops produced more crop biomass than monocultures in all but 1 site-year; however, weed biomass in intercrops was lower than monocultures in only 1 site-year. By the second sampling date, crop biomass was consistently greater in the intercrops than in the monocultures, and weed biomass was lower in the intercrops than in monocultures in 2 site-years. Although we observed several negative relationships between crop species richness and weed biomass, crop biomass was a more important factor than species richness for suppressing weeds. Despite the weak weed suppression from the two legumes compared with the two grasses, legume crops can provide other benefits, including increased forage quality, soil nitrogen for subsequent crops, and resources for pollinators if allowed to flower. On the other hand, if weed suppression is the top priority, our results suggest that monocultures of high biomass–producing grasses will provide more effective suppression at a lower seed cost than functionally diverse intercrops that include low biomass–producing legumes in warm-season intercrops.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3