H2O2 accumulation from photochemical production and atmospheric wet deposition in Antarctic coastal and off-shore waters of Potter Cove, King George Island, South Shetland Islands

Author:

Abele Doris,Ferreyra Gustavo A.,Schloss Irene

Abstract

Temporal and spatial variations of the hydrogen peroxide accumulation were measured in off-shore waters and in intertidal rockpools near Jubany Station, King George Island, South Shetland Islands. As H2O2 photoformation is mainly driven by the short wavelength radiation in the UV-B and the UV-A range of the solar spectrum, the study was conducted between the beginning of October and the end of December 1995, the period of Antarctic spring ozone depletion. Wet deposition of H2O2 containing snow was identified as a major source of hydrogen peroxide in the surface waters of Potter Cove. As the concentrations of dissolved organic carbon (DOC) in Potter Cove surface waters were low (121 ± 59 μmol Cl−1), when compared to the highly eutrophicated waters on the German Wadden coast (6000–7000 μmol Cl−1), direct UV-induced DOC photo-oxidation was of only limited significance in the Antarctic sampling site. Nonetheless, under experimental conditions, H2O2 photoformation in Potter Cove surface waters amounted to 90 ± 40 nmol H2O2 h−1 l−1 under a UV-transparent quartz plate. When high energy UV-B photons were cut-off by a WG320 filter formation continued at a rate of 66 ± 29 nmol H2O2 h−1 l−1 due to UV-A and visible light photons. Samples from freshly deposited snow contained between 10 000 and 13 600 nmol H2O2 l−1, and a snowfall event in mid November resulted in a maximum concentration of 1450 nmol H2O2 l−1 in the upper 10 cm layer of Potter Cove surface waters. Maximal H2O2 concentrations in intertidal rockpools were even higher and reached up to 2000 nmol H2O2 l−1 after the snowfall event. During a grid survey on December 17 1995, H2O2 concentrations and salinity displayed a north to south gradient, with higher concentrations and PSU at the south coast of the cove. The reasons for this spatial inhomogenety are as yet unknown, but may relate to a minor local input of photo-reactive organic matter from creeks entering the cove in the south-east, as well as to waste water discharge from the station, located on the south beach.

Publisher

Cambridge University Press (CUP)

Subject

Geology,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3