Mixed precision algorithms in numerical linear algebra

Author:

Higham Nicholas J.ORCID,Mary Theo

Abstract

Today’s floating-point arithmetic landscape is broader than ever. While scientific computing has traditionally used single precision and double precision floating-point arithmetics, half precision is increasingly available in hardware and quadruple precision is supported in software. Lower precision arithmetic brings increased speed and reduced communication and energy costs, but it produces results of correspondingly low accuracy. Higher precisions are more expensive but can potentially provide great benefits, even if used sparingly. A variety of mixed precision algorithms have been developed that combine the superior performance of lower precisions with the better accuracy of higher precisions. Some of these algorithms aim to provide results of the same quality as algorithms running in a fixed precision but at a much lower cost; others use a little higher precision to improve the accuracy of an algorithm. This survey treats a broad range of mixed precision algorithms in numerical linear algebra, both direct and iterative, for problems including matrix multiplication, matrix factorization, linear systems, least squares, eigenvalue decomposition and singular value decomposition. We identify key algorithmic ideas, such as iterative refinement, adapting the precision to the data, and exploiting mixed precision block fused multiply–add operations. We also describe the possible performance benefits and explain what is known about the numerical stability of the algorithms. This survey should be useful to a wide community of researchers and practitioners who wish to develop or benefit from mixed precision numerical linear algebra algorithms.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics,Numerical Analysis

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multifacets of lossy compression for scientific data in the Joint-Laboratory of Extreme Scale Computing;Future Generation Computer Systems;2025-02

2. Low precision preconditioning for solving neutron diffusion eigenvalue problem by finite element method;Annals of Nuclear Energy;2024-10

3. Avoiding Breakdown in Incomplete Factorizations in Low Precision Arithmetic;ACM Transactions on Mathematical Software;2024-06-28

4. A fast cosine transformation accelerated method for predicting effective thermal conductivity;Computer Methods in Applied Mechanics and Engineering;2024-06

5. Compile-Time Optimization of the Energy Consumption of Numerical Computations;Proceedings of the 21st ACM International Conference on Computing Frontiers: Workshops and Special Sessions;2024-05-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3