Time-resolved measurements of extreme ultraviolet (EUV) emission, from EUV-induced He, Ne, and Ar plasmas

Author:

Bartnik A.ORCID,Fiedorowicz H.,Wachulak P.,Fok T.

Abstract

AbstractIrradiation of gases with intense pulses of extreme ultraviolet (EUV) can result in the formation of low-temperature plasmas. During the time of irradiation, various non-thermal processes driven by the EUV photons and photoelectrons take place, leading to the creation of excited states of atoms and ions. Fast relaxation of these states should result in EUV emission within a time comparable to the driving EUV pulse. On the other hand, from our earlier works, a time duration of the emission in an optical range is over an order of magnitude longer. It can be thus expected that the time of EUV emission can be also relatively long. In this work, time-resolved measurements of the EUV emission from low-temperature plasmas induced in He, Ne, and Ar gases were performed. Due to a low intensity of the emitted radiation, a specially prepared detection system, based on an EUV collector and an EUV sensitive photodiode, was employed. In all cases, a time duration of the EUV emission was much longer compared with the driving EUV pulse. Time profiles of the corresponding signals were specific for particular gases. In case of He and Ne plasmas, these time profiles varied with initial densities of gases to be ionized. The corresponding dependence was especially visible in case of plasmas induced in helium. In case of Ar plasmas, such dependence was not revealed.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3