Identifying factors that shape whether digital food marketing appeals to children

Author:

Valderrama Camilo EORCID,Olstad Dana LeeORCID,Lee Yun YunORCID,Lee JoonORCID

Abstract

AbstractObjective:Children are frequently exposed to unhealthy food marketing on digital media. This marketing contains features that often appeal to children, such as cartoons or bold colours. Additional factors can also shape whether marketing appeals to children. In this study, in order to assess the most important predictors of child appeal in digital food marketing, we used machine learning to examine how marketing techniques and children’s socio-demographic characteristics, weight, height, BMI, frequency of screen use and dietary intake influence whether marketing instances appeal to children.Design:We conducted a pilot study with thirty-nine children. Children were divided into thirteen groups, in which they evaluated whether food marketing instances appealed to them. Children’s agreement was measured using Fleiss’ kappa and the S score. Text, labels, objects and logos extracted from the ads were combined with children’s variables to build four machine-learning models to identify the most important predictors of child appeal.Setting:Households in Calgary, Alberta, Canada.Participants:39 children aged 6–12 years.Results:Agreement between children was low. The models indicated that the most important predictors of child appeal were the text and logos embedded in the food marketing instances. Other important predictors included children’s consumption of vegetables and soda, sex and weekly hours of television.Conclusions:Text and logos embedded in the food marketing instances were the most important predictors of child appeal. The low agreement among children shows that the extent to which different marketing strategies appeal to children varies.

Publisher

Cambridge University Press (CUP)

Subject

Public Health, Environmental and Occupational Health,Nutrition and Dietetics,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3