Revolutionising food advertising monitoring: a machine learning-based method for automated classification of food videos

Author:

Rodrigues Michele BittencourtORCID,Ferreira Victória Pedrazzoli,Claro Rafael Moreira,Martins Ana Paula BortolettoORCID,Avila Sandra,Horta Paula MartinsORCID

Abstract

AbstractObjective:Food advertising is an important determinant of unhealthy eating. However, analysing a large number of advertisements (ads) to distinguish between food and non-food content is a challenging task. This study aims to develop a machine learning-based method to automatically identify and classify food and non-food ad videos.Design:Methodological study to develop an algorithm model that prioritises both accuracy and efficiency in monitoring and classifying advertising videos.Setting:From a collection of Brazilian television (TV) ads data, we created a database and split it into three sub-databases (i.e. training, validation and test) by extracting frames from ads. Subsequently, the training database was classified using the EfficientNet neural network. The best models and data-balancing strategies were investigated using the validation database. Finally, the test database was used to apply the best model and strategy, and results were verified with field experts.Participants:The study used 2124 recorded Brazilian TV programming hours from 2018 to 2020. It included 703 food ads and over 20 000 non-food ads, following the protocol developed by the INFORMAS network for monitoring food marketing on TV.Results:The results showed that the EfficientNet neural network associated with the balanced batches strategy achieved an overall accuracy of 90·5 % on the test database, which represents a reduction of 99·9 % of the time spent on identifying and classifying ads.Conclusions:The method studied represents a promising approach for differentiating food and non-food-related video within monitoring food marketing, which has significant practical implications for researchers, public health policymakers, and regulatory bodies.

Publisher

Cambridge University Press (CUP)

Subject

Public Health, Environmental and Occupational Health,Nutrition and Dietetics,Medicine (miscellaneous)

Reference41 articles.

1. 7. WHO (2022) Food Marketing Exposure and Power and their Associations with Food-Related Attitudes, Beliefs and Behaviours: A Narrative Review. https://www.who.int/publications/i/item/9789240041783 (accessed June 2023).

2. Use of persuasive strategies in food advertising on television and on social media in Brazil

3. Advertising as a cue to consume: a systematic review and meta-analysis of the effects of acute exposure to unhealthy food and nonalcoholic beverage advertising on intake in children and adults

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3