Modelling Ship Density Using a Molecular Dynamics Approach

Author:

Liu ZihaoORCID,Wu Zhaolin,Zheng Zhongyi

Abstract

Ship density is widely accepted as a basic and major indicator to reflect the marine traffic situation, but it has some limitations in representing the compactness and complexity of ship traffic. To overcoming these limitations, the paper proposes a novel ship density model based on the radial distribution function in molecular dynamics. The proposed model can identify the density and compactness of traffic around each ship and then map the ship density from a microscopic perspective. In addition, the proposed model can identify the global density and the complexity of ship traffic to some extent in the macroscopic perspective. Utilising case studies, the effectiveness of the proposed model is validated through the analysis of ship density in several regions in the Bohai Strait area. The proposed model is developed to help marine surveillance operators gain a better understanding of the traffic situation and to assist them in their work, eventually contributing to navigational safety.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Reference36 articles.

1. Traffic simulation based ship collision probability modeling

2. Aronsen, M. (2017). Density Mapping of Ship Traffic. FOSS4G – Boston 2017. Available at: https://2017.foss4g.org/post_conference/Density-mapping-of-ship-traffic-FOSS4G.pdf. [Accessed 04 July 2019].

3. Estimating Navigation Patterns from AIS

4. The Analysis of Traffic Accidents

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3