Comparative Analysis of Height-Related Multiple Correction Interpolation Methods with Constraints for Network RTK in Mountainous Areas

Author:

Song Junesol,Park Byungwoon,Kee Changdon

Abstract

In Network RTK (Real-Time Kinematic) positioning, the multiple corrections from the reference stations, which constitute a network, are interpolated for the user location through appropriate interpolation models. There exist various methods to model spatial decorrelation errors from the tropospheric and ionospheric delay, which are the main contributors of the multiple corrections. Since tropospheric delay is largely affected by height differences, the heights of the multiple reference stations should be considered when selecting the appropriate interpolation methods. This work provides a comparative analysis of the different levels of performance of each height-related multiple correction interpolation method. In addition, this study proposes to add constraints to the conventional height-related interpolation methods that are derived from the characteristics of the tropospheric zenith delay variation over height. The actual Global Positioning System (GPS) observations are collected from selected reference station networks located in the USA for performance evaluation. As a result, the proposed solution yields improved vertical positioning accuracy by approximately 10% compared to the conventional interpolation methods for the selected networks.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3