Integration of INS and Un-Differenced GPS Measurements for Precise Position and Attitude Determination

Author:

Zhang Yufeng,Gao Yang

Abstract

The integration of GPS and INS observations has been extensively investigated in recent years. Current systems are commonly based on the integration of INS data and the double differenced GPS measurements from two GPS receivers in which one is used as a reference receiver set up at a precisely surveyed control point and another is as the rover receiver whose position is to be determined. The requirement of a base receiver is to eliminate the significant GPS measurement errors related to GPS satellites, signal transmission and GPS receivers by double differencing measurements from the two receivers. With the advent of precise satellite orbit and clock products, the un-differenced GPS measurements from a single GPS receiver can be applied to output accurate position solutions at centimetre level using a positioning technology known as precise point positioning (PPP). This then opens an opportunity for the integration of un-differenced GPS measurements with INS for precise position and attitude determination. In this paper, a tightly coupled un-differenced GPS/INS system will be developed and described. The mathematical models for both INS and un-differenced GPS measurements will be introduced. The methods for mitigating GPS measurement errors will also be presented. A field test has been conducted and the results indicate that the integration of un-differenced GPS and INS observations can provide position and velocity solutions comparable with current double difference GPS/INS integration systems.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Reference14 articles.

1. Performance Analysis of Precise Point Positioning Using Rea-Time Orbit and Clock Products

2. A New Method for Carrier-Phase-Based Precise Point Positioning;Gao;Navigation, Journal of The Institute of Navigation,2002

3. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system

4. Caissy M. , Heroux P. , Lahaye F. , MacLeod K. and Popelar J. (1996). Real-Time GPS Correction Service of the Canadian Active Control System. Proceedings of ION GPS-96, Kansas City, Missouri, September 17–20, 1996.

5. Navcom, http://www.navcomtech.com/starfire.cfm

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3