Closed-loop EKF-based Pulsar Navigation for Mars Explorer with Doppler Effects

Author:

Liu Jin,Fang Jiancheng,Ning Xiaolin,Wu Jin,Kang Zhiwei

Abstract

To eliminate the impact of the Doppler effects caused by the motion of the Mars explorer, a novel X-ray pulsar navigation method based on a closed-loop filter is proposed. In the pulsar signal observation period, the Doppler velocity predicted by the orbit dynamic model and the prior information is utilised to compensate the X-ray photon time-of-arrival (TOA). However, because of the error in prior information, there is a bias caused by the Doppler compensation in the pulse time-of-arrival. The pulse TOA bias and the Mars explorer's state estimation error are correlated, which results in the decline of the Kalman filter performance. To deal with this problem, we build the TOA measurement model with respect to the state estimation error, and utilise the closed-loop extended Kalman filter (EKF) as the navigation filter, where the predicted state error is adopted as the state estimation. The simulation results demonstrate the feasibility, real-timeliness and effectiveness of the proposed navigation method. The navigation method based on the closed-loop EKF using the measurement model with the Doppler effects is more accurate than the traditional one.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Reference20 articles.

1. The pulse profile and united measurement equation in XNAV;Fei;Science China: Physics, Mechanics and Astronomy,2011

2. Modeling and Doppler measurement of X-ray pulsar;Zhang;Science China: Physics, Mechanics and Astronomy,2011

3. Selection and planning of asteroids for deep space autonomous optical navigation;Xu;Acta Aeronauticaet Astronautica Sinica,2007

4. Doppler estimation of X-ray pulsar signals based on profile feature;Xie;Journal of Astronautics,2012

5. Closed-loop filter design for X-ray pulsar-based satellite navigation system;Qiao;Control Theory and Application,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3