A Universal Approach for Processing any MEMS Inertial Sensor Configuration for Land-Vehicle Navigation

Author:

Niu Xiaoji,Nasser Sameh,Goodall Chris,El-Sheimy Naser

Abstract

Recent navigation systems integrating GPS with Micro-Electro-Mechanical Systems (MEMS) Inertial Measuring Units (IMUs) have shown promising results for several applications based on low-cost devices such as vehicular and personal navigation. However, as a trend in the navigation market, some applications require further reductions in size and cost. To meet such requirements, a MEMS full IMU configuration (three gyros and three accelerometers) may be simplified. In this context, different partial IMU configurations such as one gyro plus three accelerometers or one gyro plus two accelerometers could be investigated. The main challenge in this case is to develop a specific navigation algorithm for each configuration since this is a time-consuming and costly task. In this paper, a universal approach for processing any MEMS sensor configuration for land vehicular navigation is introduced. The proposed method is based on the assumption that the omitted sensors provide relatively less navigation information and hence, their output can be replaced by pseudo constant signals plus noise. Using standard IMU/GPS navigation algorithms, signals from existing sensors and pseudo signals for the omitted sensors are processed as a full IMU. The proposed approach is tested using land-vehicle MEMS/GPS data and implemented with different sensor configurations. Compared to the full IMU case, the results indicate the differences are within the expected levels and that the accuracy obtained meets the requirements of several land-vehicle applications.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Reference7 articles.

1. Constrained navigation algorithms for strapdown inertial navigation systems with reduced set of sensors

2. Niu X. and El-Sheimy N. (2005). Development of a Low-cost MEMS IMU/GPS Navigation System for Land Vehicles Using Auxiliary Velocity Updates in the Body Frame. Proceedings of the Institute of Navigation Satellite Division Technical Meeting (ION GPS 2005), Long Beach, California, USA, September 13–16. pp. 2003–2012.

3. El-Sheimy N. and Niu X. (2004). The Development of Low-Cost MEMS-Based IMU for Land Vehicle Navigation Applications. The GEOIDE 6th Annual Meeting, Gatineau, Québec, Canada, May 30-June 1. (CD Proceedings)

4. Mayhew D. M. (1999). Multi-rate Sensor Fusion for GPS Navigation Using Kalman Filtering. MSc Thesis, Department of Electrical and Computer Engineering, Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.

5. Phuyal B. (2004). An Experiment for a 2-D and 3-D GPS/INS Configuration for Land Vehicle Applications. Proceedings of the IEEE Position Location and Navigation Symposium (PLANS 2004), Monterey, California, USA, April 26–29. pp. 148–152.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3