A Novel Approach to Visual Navigation based on Feature Line Correspondences for Precision Landing

Author:

Shao Wei,Gu Tianhao,Ma Yin,Xie Jincheng,Cao Liang

Abstract

To satisfy the needs of precise pin-point landing missions in deep space exploration, this paper proposes a method based on feature line extraction and matching to estimate the attitude and position of a lander during the descent phase. Linear equations for a lander's motion parameters are given by using at least three feature lines on the planetary surface and their two-dimensional projections. Then, by taking advantage of Singular Value Decomposition (SVD), candidate solutions are obtained. Lastly, the unique lander's attitude and position relative to the landing site are selected from the candidate solutions. Simulation results show that the proposed algorithm is able to estimate a lander's attitude and position robustly and quickly. Without an extended Kalman filter, the average errors of attitude are less than 1°and the average errors of position are less than 10 m at an altitude of 2,000 m. With an extended Kalman filter, attitude errors are within 0·5°and position errors are within 1 m at an altitude of 247·9 m.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3