A Large-Scale Invariant Matching Method Based on DeepSpace-ScaleNet for Small Celestial Body Exploration

Author:

Fan Mingrui,Lu WenlongORCID,Niu Wenlong,Peng Xiaodong,Yang Zhen

Abstract

Small Celestial Body (SCB) image matching is essential for deep space exploration missions. In this paper, a large-scale invariant method is proposed to improve the matching accuracy of SCB images under large-scale variations. Specifically, we designed a novel network named DeepSpace-ScaleNet, which employs an attention mechanism for estimating the scale ratio to overcome the significant variation between two images. Firstly, the Global Attention-DenseASPP (GA-DenseASPP) module is proposed to refine feature extraction in deep space backgrounds. Secondly, the Correlation-Aware Distribution Predictor (CADP) module is built to capture the connections between correlation maps and improve the accuracy of the scale distribution estimation. To the best of our knowledge, this is the first work to explore large-scale SCB image matching using Transformer-based neural networks rather than traditional handcrafted feature descriptors. We also analysed the effects of different scale and illumination changes on SCB image matching in the experiment. To train the network and verify its effectiveness, we created a simulation dataset containing light variations and scale variations named Virtual SCB Dataset. Experimental results show that the DeepSpace-ScaleNet achieves a current state-of-the-art SCB image scale estimation performance. It also shows the best accuracy and robustness in image matching and relative pose estimation.

Funder

Wenlong Niu

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the empirical exploration of a new probability distribution in physical education and reliability;Alexandria Engineering Journal;2024-11

2. Parallel dual adaptive genetic algorithm: A method for satellite constellation task assignment in time-sensitive target tracking;Advances in Space Research;2024-07

3. Parallel Computing Using CUDA and MultiThreading in Background Removal Process;2024 3rd International Conference on Digital Transformation and Applications (ICDXA);2024-01-29

4. SCB-GAN: A High-Quality Small Celestial Body Surface Image Synthesis Method;IEEE Transactions on Aerospace and Electronic Systems;2023-12

5. A Deep Learning-Based Model for Classifying Sweetness Level of Sky Rocket Melon: A Preliminary Result;2023 2nd International Conference on Computer System, Information Technology, and Electrical Engineering (COSITE);2023-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3