A short-term intervention trial with selenate, selenium-enriched yeast and selenium-enriched milk: effects on oxidative defence regulation

Author:

Ravn-Haren Gitte,Bügel Susanne,Krath Britta N.,Hoac Tien,Stagsted Jan,Jørgensen Karina,Bresson June R.,Larsen Erik H.,Dragsted Lars O.

Abstract

Increased Se intakes have been associated with decreased risk of cancer and CVD. Several mechanisms have been proposed, including antioxidant effects through selenoproteins, induction of carcinogen metabolism and effects on the blood lipid profile. In a 4 × 1 week randomised, double-blind cross-over study, healthy young men supplemented their usual diet with selenate, Se-enriched yeast, Se-enriched milk or placebo (Se dose was 300 μg/d for selenate and Se-enriched yeast, and about 480 μg/d for Se-enriched milk) followed by 8-week washout periods. All Se sources increased serum Se levels after supplementation for 1 week. The effect of the organic forms did not differ significantly and both increased serum Se more than selenate. Conversely, thrombocyte glutathione peroxidase (GPX) was increased in the periods where subjects were supplemented with selenate but not in those where they were given Se-enriched yeast or Se-enriched milk. We found no effect on plasma lipid resistance to oxidation, total cholesterol, TAG, HDL- and LDL-cholesterol, GPX, glutathione reductase (GR) and glutathione S-transferase (GST) activities measured in erythrocytes, GPX and GR activities determined in plasma, or GR and GST activities in thrombocytes. Leucocyte expression of genes encoding selenoproteins (GPX1, TrR1 and SelP), and of electrophile response element-regulated genes (GCLC, Fra1 and NQO1) were likewise unaffected at all time points following intervention. We conclude that thrombocyte GPX is specifically increased by short-term selenate supplementation, but not by short-term supplementation with organic Se. Short-term Se supplementation does not seem to affect blood lipid markers or expression and activity of selected enzymes and a transcription factor involved in glutathione-mediated detoxification and antioxidation.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3