Increased induction of apoptosis by Propionibacterium freudenreichii TL133 in colonic mucosal crypts of human microbiota-associated rats treated with 1,2-dimethylhydrazine

Author:

Lan Annaïg,Bruneau Aurélia,Bensaada Martine,Philippe Catherine,Bellaud Pascale,Rabot Sylvie,Jan Gwénaël

Abstract

Propionibacterium freudenreichii, a food-grade bacterium able to kill colon cancer cell lines in vitro by apoptosis, may exert an anticarcinogenic effect in vivo. To assess this hypothesis, we administered daily 2 × 1010 colony-forming units (CFU) of P. freudenreichii TL133 to human microbiota-associated (HMA) rats for 18 d. Either saline or 1,2-dimethylhydrazine (DMH) was also administered on days 13 and 17 and rats were killed on day 19. The levels of apoptosis and proliferation in the mid and distal colon were assessed by terminal deoxynucleotide transferase-mediated deoxyuridine triphosphate nick end labelling (TUNEL) and proliferating cell nuclear antigen (PCNA) immunolabelling, respectively. The administration of P. freudenreichii TL133 significantly increased the number of apoptotic cells in DMH-treated rats compared to those given DMH only (P < 0·01). Furthermore, propionibacteria were able to decrease the proliferation index in the distal colon after treatment with DMH (P < 0·01). Conversely, propionibacteria alone did not exert such an effect on healthy colonic mucosa. P. freudenreichii TL133 thus facilitated the elimination of damaged cells by apoptosis in the rat colon after genotoxic insult and may play a protective role against colon cancer.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

Reference54 articles.

1. Apoptosis as a biomarker in chemoprevention trials

2. A Synbiotic Combination of Resistant Starch and Bifidobacterium lactis Facilitates Apoptotic Deletion of Carcinogen-Damaged Cells in Rat Colon

3. Inhibition of apoptosis during development of colorectal cancer;Bedi;Cancer Res,1995

4. Apoptosis (cell death) induced in mouse bowel by 1,2-dimethylhydrazine, methylazoxymethanol acetate, and gamma-rays;Ijiri;Cancer Res,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3