The effect of a model melanoidin mixture on faecal bacterial populationsin vitro

Author:

Ames Jennifer M.,Wynne Anthony,Hofmann Andrea,Plos Saskia,Gibson Glenn R.

Abstract

The Maillard reaction produces coloured, macromolecular materials (melanoidins) in a variety of foods, on heating. Significant quantities may enter the human gut on a daily basis, but there is little information on their metabolism in the human colon. As the large bowel contains a diverse population of bacteria involved in normal bowel function, it is possible that melanoidins are metabolized therein. Depending on the bacteria involved, there may be disease or health implications. The aim of the present study was to usein vitromodels to determine the digestibility of melanoidins and the effect of melanoidins on colonic bacteria in the gastrointestinal tract. Melanoidins were prepared and the effects of simulated upper-gut secretions on their stability determined in a model system. The effects of faecal bacteria were also determined, in batch culture, with a combination of phenotypic and genotypic (probes) criteria being used to identify the microbial diversity involved. Simulation of peptic and pancreatic digestion showed that the melanoidins did not produce detectable amounts of low-molecular-mass degradation products. However, melanoidins affected the growth of gut bacteria during mixed culture growth. The effect was to cause a non-specific increase in the anaerobic bacteria enumerated. Thisin vitrostudy indicates that melanoidins can affect the growth of human large-bowel bacteria and serves to demonstrate possible effects that may occurin vivo. Given the large and varied number of food items that contain Maillard reaction products, this may have relevance for lower-gut health.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3