Stage-specific feed intake restriction differentially regulates placental traits and proteome of goats

Author:

Yan Qiongxian,Xu Juanzhi,Wu Xiaosong,Su Dingding,Tan Zhiliang

Abstract

AbstractA total of twenty-four healthy twin-bearing Liuyang black goats were allocated to two trials. In Trial 1, twelve goats received either the control diet (CG, n 6, 100 % feed) or restricted diet (RG, n 6, 60 % feed of CG) from gestation days 26 to 65 after synchronisation. In Trial 2, the remaining goats were randomly and equally divided into two treatments: CG and RG from days 95 to 125 of gestation. Placental traits, fetal weight, serum parameters, nitric oxide (NO), angiogenesis gene expression and cotyledon proteome were measured at the end of each trial. In early pregnancy, the total and relative weights of placenta, uterine caruncle and cotyledon, as well as fetus, were increased (P<0·05) in RG. The NO content in maternal serum was also increased (P<0·05) in RG. In all, fifty differentially expressed proteins were identified in cotyledon. The up-regulated proteins are related to proliferation and fission of trophoblast cell and the placenta angiogenesis. During the late pregnancy trial, placental weight was increased (P<0·05) in RG, but weight of the fetus was decreased (P<0·05). The capillary density in the cotyledon was also decreased (P<0·01). A total of fifty-eight proteins were differentially expressed in cotyledon. The up-regulated proteins in RG are related to placenta formation, blood flow regulation and embryonic development. These results indicated that feed intake restriction during gestation influenced the placental and fetal development in a stage-dependent manner. These findings have important implications for developing novel nutrient management strategies in goat production.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3