Diagnostics of power setting sensor fault of gas turbine engines using genetic algorithm

Author:

Li Yi-Guang

Abstract

ABSTRACTGas path diagnostics is one of the most effective condition monitoring techniques in supporting condition-based maintenance of gas turbines and improving availability and reducing maintenance costs of the engines. The techniques can be applied to the health monitoring of different gas path components and also gas path measurement sensors. One of the most important measurement sensors is that for the engine control, also called the power setting sensor, which is used by the engine control system to control the operation of gas turbine engines. In most of the published research so far, it is rarely mentioned that faults in such sensors have been tackled in either engine control or condition monitoring. The reality is that if such a sensor degrades and has a noticeable bias, it will result in a shift in engine operating condition and misleading diagnostic results.In this paper, the phenomenon of a power-setting sensor fault has been discussed and a gas path diagnostic method based on a Genetic Algorithm (GA) has been proposed for the detection of power-setting sensor fault with and without the existence of engine component degradation and other gas path sensor faults. The developed method has been applied to the diagnostic analysis of a model aero turbofan engine in several case studies. The results show that the GA-based diagnostic method is able to detect and quantify the power-setting sensor fault effectively with the existence of single engine component degradation and single gas path sensor fault. An exceptional situation is that the power-setting sensor fault may not be distinguished from a component fault if both faults have the same fault signature. In addition, the measurement noise has small impact on prediction accuracy. As the GA-based method is computationally slow, it is only recommended for off-line applications. The introduced GA-based diagnostic method is generic so it can be applied to different gas turbine engines.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference32 articles.

1. Multiple-sensor fault-diagnoses for a 2-shaft stationary gas-turbine

2. Performance-analysis-based gas turbine diagnostics: a review;Li;Proceedings of the Institution of Mechanical Engineers, Part A: J. Power and Energy,2002

3. F16 jet engine trending and diagnostics with neural networks

4. Dyson R.J.E. and Doel D.L. CF-80 condition monitoring – the engine manufacturing's involvement in data acquisition and analysis, AIAA-84-1412, 1987.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3