Food security analysis and forecasting: A machine learning case study in southern Malawi

Author:

Gholami ShahrzadORCID,Knippenberg Erwin,Campbell James,Andriantsimba Daniel,Kamle Anusheel,Parthasarathy Pavitraa,Sankar Ria,Birge Cameron,Lavista Ferres Juan

Abstract

Abstract Chronic food insecurity remains a challenge globally, exacerbated by climate change-driven shocks such as droughts and floods. Forecasting food insecurity levels and targeting vulnerable households is apriority for humanitarian programming to ensure timely delivery of assistance. In this study, we propose to harness a machine learning approach trained on high-frequency household survey data to infer the predictors of food insecurity and forecast household level outcomes in near real-time. Our empirical analyses leverage the Measurement Indicators for Resilience Analysis (MIRA) data collection protocol implemented by Catholic Relief Services (CRS) in southern Malawi, a series of sentinel sites collecting household data monthly. When focusing on predictors of community-level vulnerability, we show that a random forest model outperforms other algorithms and that location and self-reported welfare are the best predictors of food insecurity. We also show performance results across several neural networks and classical models for various data modeling scenarios to forecast food security. We pose that problem as binary classification via dichotomization of the food security score based on two different thresholds, which results in two different positive class to negative class ratios. Our best performing model has an F1 of 81% and an accuracy of 83% in predicting food security outcomes when the outcome is dichotomized based on threshold 16 and predictor features consist of historical food security score along with 20 variables selected by artificial intelligence explainability frameworks. These results showcase the value of combining high-frequency sentinel site data with machine learning algorithms to predict future food insecurity outcomes.

Publisher

Cambridge University Press (CUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3