Multivariate random forest prediction of poverty and malnutrition prevalence

Author:

Browne ChrisORCID,Matteson David S.,McBride Linden,Hu LeiqiuORCID,Liu Yanyan,Sun Ying,Wen Jiaming,Barrett Christopher B.

Abstract

Advances in remote sensing and machine learning enable increasingly accurate, inexpensive, and timely estimation of poverty and malnutrition indicators to guide development and humanitarian agencies’ programming. However, state of the art models often rely on proprietary data and/or deep or transfer learning methods whose underlying mechanics may be challenging to interpret. We demonstrate how interpretable random forest models can produce estimates of a set of (potentially correlated) malnutrition and poverty prevalence measures using free, open access, regularly updated, georeferenced data. We demonstrate two use cases: contemporaneous prediction, which might be used for poverty mapping, geographic targeting, or monitoring and evaluation tasks, and a sequential nowcasting task that can inform early warning systems. Applied to data from 11 low and lower-middle income countries, we find predictive accuracy broadly comparable for both tasks to prior studies that use proprietary data and/or deep or transfer learning methods.

Funder

United States Agency for International Development

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference71 articles.

1. Predicting poverty and malnutrition for targeting, mapping, monitoring, and early warning;L McBride;Applied Economic Perspectives and Policy,2021

2. The economics of poverty traps and persistent poverty: An asset-based approach;MR Carter;The Journal of Development Studies,2006

3. Barrett CB, Carter MR, Chavas JP. The economics of poverty traps. University of Chicago Press Chicago and National Bureau for Economic Research; 2019.

4. Quantifying household resilience with high frequency data: Temporal dynamics and methodological options;E Knippenberg;World Development,2019

5. Micro-level estimation of poverty and inequality;C Elbers;Econometrica,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3