1. Abarca-Álvarez, F. J., Méndez, C., Torres-Parejo, U., & García-Arias, M. A. (2022). Mejora de la toma de decisiones en la asistencia humanitaria mediante el uso de metodologías del campo de la Inteligencia Artificial. In La transversalidad de la investigación en comunicación (pp. 587-609). Dykinson.
2. Alpízar, F., Saborío-Rodríguez, M., Martínez-Rodríguez, M. R., Viguera, B., Vignola, R., Capitán, T., & Harvey, C. A. (2020). Determinants of food insecurity among smallholder farmer households in Central America: recurrent versus extreme weather-driven events. Regional Environmental Change, 20, 1-16.
3. Andrée, B. P. J. (2022). Machine Learning Guided Outlook of Global Food Insecurity Consistent with Macroeconomic Forecasts. World Bank Policy Research Working Papers.
4. Andrée, B. P. J., Chamorro, A., Kraay, A., Spencer, P., & Wang, D. (2020). Predicting food crises. World Bank Policy Research Working Paper 9412.
5. Aurino, E. (2014). Selecting a core set of indicators for monitoring global food security: A methodological proposal. FAO food and nutrition series.