Guidance for Materials 4.0 to interact with a digital twin

Author:

Cogswell DanielORCID,Paramatmuni Chaitanya,Scotti Lucia,Moffat James

Abstract

Abstract The rapid development of new infrastructure programmes requires an accelerated deployment of new materials in new environments. Materials 4.0 is crucial to achieve these goals. The application of digital to the field of materials has been at the forefront of research for many years, but there does not exist a unified means to describe a framework for this area creating pockets of development. This is confounded by the broader expectations of a digital twin (DT) as the possible answer to all these problems. The issue being that there is no accepted definition of a component DT, and what information it should contain and how it can be implemented across the product lifecycle exist. Within this position paper, a clear distinction is made between the “manufacturing DT” and the “component DT”; the former being the starting boundary conditions of the latter. In order to achieve this, we also discuss the introduction of a digital thread as a key concept in passing data through manufacturing and into service. The stages of how to define a framework around the development of DTs from a materials perspective is given, which acknowledges the difference between creating new understanding within academia and the application of this knowledge on a per-component basis in industry. A number of challenges are identified to the broad application of a component DT; all lead to uncertainty in properties and locations, resolving these requires judgments to be made in the provision of safety-dependent materials property data.

Funder

UK Research and Innovation

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3