An end-to-end data-driven optimization framework for constrained trajectories

Author:

Dewez FlorentORCID,Guedj BenjaminORCID,Talpaert Arthur,Vandewalle Vincent

Abstract

Abstract Many real-world problems require to optimize trajectories under constraints. Classical approaches are often based on optimal control methods but require an exact knowledge of the underlying dynamics and constraints, which could be challenging or even out of reach. In view of this, we leverage data-driven approaches to design a new end-to-end framework which is dynamics-free for optimized and realistic trajectories. Trajectories are here decomposed on function basis, trading the initial infinite dimension problem on a multivariate functional space for a parameter optimization problem. Then a maximum a posteriori approach which incorporates information from data is used to obtain a new penalized optimization problem. The penalized term narrows the search on a region centered on data and includes estimated features of the problem. We apply our data-driven approach to two settings in aeronautics and sailing routes optimization. The developed approach is implemented in the Python library PyRotor.

Funder

Horizon 2020 Framework Programme

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference22 articles.

1. Trust Region Methods

2. Rommel, C , Bonnans, F , Martinon, P and Gregorutti, B (2017). Aircraft dynamics identification for optimal control. In 7th European Conference for Aeronautics and Aerospace Sciences (EUCASS).

3. SciPy 1.0: fundamental algorithms for scientific computing in Python

4. Optimal energy-based 4D guidance and control for terminal descent operations

5. A survey of numerical methods for optimal control;Rao;Advances in the Astronautical Sciences,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3