Genetic and phenotypic relationships between food intake, growth, efficiency and body composition of mice post weaning and at maturity

Author:

Archer J. A.,Pitchford W. S.,Hughes T. E.,Parnell P. F.

Abstract

AbstractGenetic and phenotypic variation in post-weaning growth, food intake, efficiency and body composition of mice post weaning and at maturity, were examined to determine whether genetic variation in efficiency exists and to predict likely responses to selection for increased food efficiency in post-weaning animals. Genetic variation was found for average daily gain, mid-weight, daily food intake and proportion of body fat both post weaning and at maturity. Residual food intake calculated from phenotypic regression had a heritability of 0·27 (s.e. 0·06) post weaning and 0·24 (s.e. 0·08) at maturity, and was very similar to residual food intake calculated using genetic (co)variances, indicating genetic variation in efficiency exists in post-weaning and mature mice. Although the phenotypic correlation between residual food intake post weaning and at maturity was low (0·29), the genetic correlation was moderate (0·60). This suggests that selection for efficiency in young animals will lead to a correlated improvement in maintenance efficiency of mature animals. Genetic correlation estimates suggest that correlated responses in other traits would include a concomitant decrease in post-weaning food intake, a slight increase in weight at weaning, a slight increase in post-weaning fat proportion and little or no change in post-weaning growth. In mature animals there will be an associated decrease in daily food intake and a slight decrease in mature size and body fat proportion. The results suggest that residual food intake of young animals might be a suitable selection criteria for use in livestock species to improve efficiency in young animals and also in the breeding herd.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology

Reference28 articles.

1. The energetic efficiency of metabolism

2. Genetic control of equilibrium maintenance efficiency in cattle

3. Swan A. A. 1994. Front-end programs to run DFREML. Proceedings of the fifth world congress on genetics applied to animal production, Guelph, vol. 22, p. 53.

4. Stephens S. , Thompson J. M. and Reynolds P. 1988. Genetic variation in efficiency of maintenance in mature mice. Proceedings of the seventh conference of the Australian Association of Animal Breeding and Genetics, pp. 538–541.

5. Stephens S. 1991. Biological aspects of feeding and growth in mice. Ph.D. thesis, University of New England, Armidale, Australia.

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3