Phylogeny, ancestors, and anagenesis in the hominin fossil record

Author:

Parins-Fukuchi CarolineORCID,Greiner Elliot,MacLatchy Laura M.,Fisher Daniel C.

Abstract

AbstractProbabilistic approaches to phylogenetic inference have recently gained traction in paleontological studies. Because they directly model processes of evolutionary change, probabilistic methods facilitate a deeper assessment of variability in evolutionary patterns by weighing evidence for competing models. Although phylogenetic methods used in paleontological studies have generally assumed that evolution proceeds by splitting cladogenesis, extensions to previous models help explore the potential for morphological and temporal data to provide differential support for contrasting modes of evolutionary divergence. Recent methodological developments have integrated ancestral relationships into probabilistic phylogenetic methods. These new approaches rely on parameter-rich models and sophisticated inferential methods, potentially obscuring the respective contributions of data and models. In this study, we describe a simple likelihoodist approach that combines probabilistic models of morphological evolution and fossil preservation to reconstruct both cladogenetic and anagenetic relationships. By applying this approach to a data set of fossil hominins, we demonstrate the capability of existing models to unveil evidence for anagenesis presented by morphological and temporal data. This evidence was previously recognized by qualitative assessments, but largely ignored by quantitative phylogenetic analyses. For example, we find support for directly ancestral relationships in multiple lineages: Sahelanthropus is ancestral to later hominins; Australopithecus anamensis is ancestral to Australopithecus afarensis; Australopithecus garhi is ancestral to Homo; Homo antecessor is ancestral to Homo heidelbergensis, which in turn is ancestral to both Homo sapiens and Homo neanderthalensis. By accommodating direct ancestry in phylogenetics, quantitative results align more closely with previous qualitative expectations.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3