Abstract
AbstractRelational program verification is a variant of program verification where one can reason about two programs and as a special case about two executions of a single program on different inputs. Relational program verification can be used for reasoning about a broad range of properties, including equivalence and refinement, and specialized notions such as continuity, information flow security, or relative cost. In a higher-order setting, relational program verification can be achieved using relational refinement type systems, a form of refinement types where assertions have a relational interpretation. Relational refinement type systems excel at relating structurally equivalent terms but provide limited support for relating terms with very different structures. We present a logic, called relational higher-order logic (RHOL), for proving relational properties of a simply typed λ-calculus with inductive types and recursive definitions. RHOL retains the type-directed flavor of relational refinement type systems but achieves greater expressivity through rules which simultaneously reason about the two terms as well as rules which only contemplate one of the two terms. We show that RHOL has strong foundations, by proving an equivalence with higher-order logic, and leverage this equivalence to derive key meta-theoretical properties: subject reduction, admissibility of a transitivity rule, and set-theoretical soundness. Moreover, we define sound embeddings for several existing relational type systems such as relational refinement types and type systems for dependency analysis and relative cost, and we verify examples that were out of reach of prior work.
Publisher
Cambridge University Press (CUP)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Relational Program Logic with Data Abstraction and Dynamic Framing;ACM Transactions on Programming Languages and Systems;2022-12-31
2. Proving hypersafety compositionally;Proceedings of the ACM on Programming Languages;2022-10-31
3. The Systematic Design of Responsibility Analysis by Abstract Interpretation;ACM Transactions on Programming Languages and Systems;2022-03-31
4. Effectful program distancing;Proceedings of the ACM on Programming Languages;2022-01-12
5. ReLoC Reloaded: A Mechanized Relational Logic for Fine-Grained
Concurrency and Logical Atomicity;Logical Methods in Computer Science;2021-07-27