The Systematic Design of Responsibility Analysis by Abstract Interpretation

Author:

Deng Chaoqiang1ORCID,Cousot Patrick1

Affiliation:

1. New York University, NY, USA

Abstract

Given a behavior of interest, automatically determining the corresponding responsible entity (i.e., the root cause) is a task of critical importance in program static analysis. In this article, a novel definition of responsibility based on the abstraction of trace semantics is proposed, which takes into account the cognizance of observer, which, to the best of our knowledge, is a new innovative idea in program analysis. Compared to current dependency and causality analysis methods, the responsibility analysis is demonstrated to be more precise on various examples. However, the concrete trace semantics used in defining responsibility is uncomputable in general, which makes the corresponding concrete responsibility analysis undecidable. To solve this problem, the article proposes a sound framework of abstract responsibility analysis, which allows a balance between cost and precision. Essentially, the abstract analysis builds a trace partitioning automaton by an iteration of over-approximating forward reachability analysis with trace partitioning and under/over-approximating backward impossible failure accessibility analysis, and determines the bounds of potentially responsible entities along paths in the automaton. Unlike the concrete responsibility analysis that identifies exactly a single action as the responsible entity along every concrete trace, the abstract analysis may lose some precision and find multiple actions potentially responsible along each automaton path. However, the soundness is preserved, and every responsible entity in the concrete is guaranteed to be also found responsible in the abstract.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Causal analysis of positive Reaction Systems;International Journal on Software Tools for Technology Transfer;2024-06-19

2. A Personal Historical Perspective on Abstract Interpretation;The French School of Programming;2023-10-11

3. How to Make Taint Analysis Precise;Intelligent Systems Reference Library;2023

4. Abstract Interpretation: From 0, 1, to $$\infty $$;Intelligent Systems Reference Library;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3