Hysteretic Characteristics of Atrazine Adsorption-Desorption by a Sharkey Soil

Author:

Ma Liwang,Southwick Lloyd M.,Willis Guye H.,Selim H. Magdi

Abstract

The purpose of this study was to quantify hysteresis during adsorption and desorption of atrazine as a function of incubation time for a Sharkey clay soil. Adsorption was carried out using one day batch equilibration and was followed by incubation periods ranging from 1 to 24 d. Incubation was subsequently followed by six consecutive desorption steps where each step represented 1 d. The Freundlich equation (S = K CNwhere S is the amount of atrazine retained, μg g-1; C is concentration, μg ml-1; K is the distribution coefficient, cm3g-1; and N is a dimensionless parameter) was used to describe batch results. Both adsorption and desorption isotherms were well described by the Freundlich model. Fitted K parameter values for desorption isotherms were consistently higher than those associated with adsorption. The opposite trend was observed for the exponential parameter N. The results revealed that desorption deviated significantly from adsorption data. The deviation, which is commonly referred to as hysteresis, was more pronounced as incubation time increased. Batch equilibration results also indicated that the extent of hysteresis was not influenced by soil sterilization. Attempts to quantify the extent of hysteresis using a simplified approach are presented. We found that, for a given batch data set, hysteresis can be quantified provided that Freundlich N from adsorption and desorption isotherms is known.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference26 articles.

1. Mass Transfer Studies in Sorbing Porous Media: III. Experimental Evaluation with 2,4,5‐T

2. Microbial Versus Chemical Degradation of Atrazine in Soils

3. Selim H. M. , Davidson J. M. , and Mansell R. S. 1976. Evaluation of a two-site adsorption-desorption model for describing solute transport in soils. Pages 444–448 in Summer Computer Simulation Conference, Washington, DC.

4. Prediction of contaminant retention and transport in soils using kinetic multireaction models.

5. Mode of Chemical Degradation of s -Triazines by Montmorillonite

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3