Adsorption of Zerovalent Iron Nanoparticles in the Inorganic Fraction of Volcanic Soils

Author:

Gacitua ManuelORCID,Pavez Lynda,Escudey Mauricio,Antilén Mónica

Abstract

Abstract Zerovalent (ZVI) iron has been used in environmental remediation, but the environmental fate of its nanoparticles (NZVI) is hard to find. The present study aimed to characterise the adsorption processes of commercial ZVI in the inorganic fraction of volcanic soils, contributing to the knowledge of the adsorption process on the whole soil. Volcanic soil samples were obtained by calcination method and characterised. A nano-ZVI stable suspension is prepared and characterised to know its size-particle distribution. Adsorption points (kinetical and isothermal) were obtained by adapting the procedure for homogeneous analyte adsorption. Kinetical, solute transport and isothermal adsorption and desorption models were adjusted to obtain more conclusive information about the process. Analysis of the results revealed that adsorption is a fast process. The inorganic fraction of an Andisol presented pH-dependant surface charge, requiring highly consistent control of the working pH to obtain proper adsorption points. Isothermal adsorption indicates that a combination of physical and chemical mechanisms contributes to the NZVI adsorption process. Desorption studies suggested chemisorption on specific surface-active sites of adsorbents, with the inorganic fraction of soil irreversibly retaining most of the NZVI particles. NZVI become irreversibly adsorbed over the inorganic fraction of soils, extending particle reactivity through time, affecting the stability of organic matter and microbial communities. In turn, this increases the possibility for plant uptake. Nevertheless, there is a low risk for the transport of NZVI through soil profiles or co-transport of other components that becomes adsorbed over iron, lowering the risk of aquifer pollution.

Funder

ANID

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3