Effects of Zeowine and compost on leaf functionality and berry composition in Sangiovese grapevines

Author:

Cataldo E.ORCID,Fucile M.,Manzi D.,Peruzzi E.,Mattii G.B.

Abstract

AbstractMeteorological extremes such as heatwaves and water limitations during the ripening season could negatively impact vine ecophysiology and berry metabolism resulting in lower yield per vine. This project aimed to compare two different soil managements during two growing-production seasons (2021 and 2022) with respect to control without any treatment (control). The two managements were: Zeowine (30 t/ha; a soil conditioner made with clinoptilolite and compost proceeding of industrial wine-waste) and compost (20 t/ha). The trial was organized at Col d'Orcia Estate (Montalcino, Tuscan wine region, Italy). The purpose was twofold: (1) to evaluate the effects of Zeowine treatments on leaf gas exchanges, midday stem water potential, chlorophyll fluorescence and leaf temperature (ecophysiology); and (2) to determine any repercussions on the quality of the grapes (technological and phenolics analyses). The parameters plant yield, yeast assimilable nitrogen, fractionation of anthocyanins (cyanidin, delphinidin, malvidin, peonidin and petunidin), caffeic acid, coumaric acid, gallic acid, ferulic acid, kaempferol and quercetin were also analysed. Zeowine showed higher photosynthesis, less negative midday water potential and lower leaf temperature. Essentially, no significant difference was found between the compost and the control. Furthermore, Zeowine grapevines showed higher anthocyanin accumulation and less quercetin content. In general, compost applied together with zeolite could alleviate the adverse effects of water stress and improve plant growth, yield and quality. The control management strategy proved to be the least beneficial for the well-being of the plant and the final quality of the product, confirming the need for amendments in critical years.

Funder

European Commission

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3