Mineralization of bagged pruning waste in agrosystem on the subtropical coast of Andalusia (Spain)

Author:

Reyes-Martín M. P.ORCID,Martínez-Cartas M. L.,Ortiz-Bernad I.,San-Emeterio L. M.ORCID,Fernández-Ondoño E.

Abstract

AbstractSpreading of pruning waste over the soil surface may increase soil organic carbon, thus improving soil physical properties and serving as a source of nutrients and energy for microbial populations. The aim of this study was to test the effect of the environmental conditions and the biochemical composition of pruning waste from avocado, cherimoya, mango and gardens on their decomposition process in a Mediterranean subtropical climate. Bagged pruning and garden waste were placed on the ground at a distance of 1 m around the trunk of the three trees from each crop. The concentrations in C, N, lignin, cellulose, hemicellulose, other extracts and ash were determined at the beginning of the experiment (T0), after six (T6) and 24 (T24) months in the field. Initially, significant differences were detected for all types of waste, especially in lignin, hemicellulose, cellulose and other extracts. No significant differences were found in the N content and the C content in mango pruning waste was significantly lower than that in avocado. The greatest weight loss recorded at T24 (63.2%) was related to the lower content in lignin, cellulose and other extracts. Weight losses and C concentrations showed negative correlations with lignin content. Despite the intense decomposition of all the waste, between 55 and 36.8% of the original weights were recorded at the end of the experiment. Recalcitrant C could be the result of the lignin concentrating in the case of the garden waste applied to the different crops.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3