Weather indices during reproductive phase explain wheat yield variability

Author:

Zeleke Ketema TilahunORCID,Anwar Muhuddin,Emebiri Livinus,Luckett David

Abstract

Abstract When water and nutrients are not limiting, and pests and disease are effectively controlled, crop growth and yield is determined by weather conditions such as temperature and solar radiation. To determine the relationship between weather indices and crop yield, multiple wheat varieties were sown at two sowing times, for five sowing seasons and at two locations. The following weather indices around the 50% anthesis stage were recorded and analysed: mean temperature (Tmean), maximum temperature (Tmax), number of days with temperature >30°C (T30), vapour pressure deficit (VPD), photosynthetically active radiation, photothermal quotient (PQ) and photothermal quotient corrected for vapour pressure deficit (PQvpd). Overall, for every 1°C rise in temperature, crop yield decreased by 370 kg/ha. For every 1°C rise in temperature, normal sowing window yield decreased by 360 kg/ha while late-sown wheat yield decreased by 640 kg/ha. Correlation analysis was conducted between the weather indices and grain number, grain yield and grain protein. There was a significant positive correlation between PQ and PQvpd and grain number and grain yield. There was a significant negative correlation between Tmean, Tmax, T30 and VPD and grain number and grain yield. Grain protein content showed a positive correlation with maximum air temperature and a negative correlation with the weather indices PQ and PQvpd. PQ and PQvpd can be used to predict grain number and grain yield potential. This study showed that grain number and grain yield predicted using PQ and PQvpd are more reliable than using temperature and radiation individually.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Reference55 articles.

1. Photothermal Quotient Specifications to Improve Wheat Cultivar Yield Component Models

2. The effects of radiation and nitrogen on number of grains in wheat

3. High temperature affects the activity of enzymes in the committed pathway of starch synthesis in developing wheat endosperm;Hawker;Australian Journal of Plant Physiology,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3