The effects of radiation and nitrogen on number of grains in wheat

Author:

Abbate P. E.,Andrade F. H.,Culot J. P.

Abstract

SUMMARYThe possible interacting effects of shading and N supply on number of grains ofTriticum aestivumL. (cv. Buck Ñandú) were investigated at Balcarce, Argentina, during the 1988/89 and 1989/90 growing seasons. Shading was imposed fromc.13 days before anthesis to 6 days after, and four rates of N fertilization were supplied within each shading treatment around the date of terminal spikelet formation. Water and other nutrients were not limiting.Total grain yield was strongly correlated with grain number/m2, regardless of shading or N supply. At the highest N rates, grain number and dry weight of spikes at anthesis were linearly related to a photothermal quotient, i.e. the ratio of intercepted photosynthetically active radiation (PAR) to mean temperature minus 4·5 °C, during the period from 20 days before anthesis to 10 days after. The response of grain number to the photothermal quotient was interpreted in terms of the supply of assimilates to the spike at anthesis, which determined flower survival. The response of dry weight of spikes to photothermal quotient was interpreted in terms of crop growth rate since there was a linear relationship between crop growth rate and intercepted radiation. The lowest N rates reduced the number of grains/m2, at any given photothermal quotient. Since the reduction in grain number also occurred at any given dry weight of spikes, it cannot be explained by a reduced supply of assimilates to the spikes. Grain number responded directly to the supply of N to the spike, probably through the survival of differentiated flowers. The relationship between spike growth rate and crop growth rate was not affected by N supply. Crop growth rate was reduced by reduced N supply, because less radiation was intercepted and because radiation-use efficiency was lowered. These results indicate that current models for determining yield and number of grains/m2, based on crop growth, are not adequate when N is deficient.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3