Effects of different dietary protein levels and rumen-protected folic acid on ruminal fermentation, degradability, bacterial populations and urinary excretion of purine derivatives in beef steers

Author:

WANG C.,LIU Q.,GUO G.,HUO W. J.,LIANG Y.,PEI C. X.,ZHANG S. L.,YANG W. Z.,WANG H.

Abstract

SUMMARYThe current experiment was conducted to evaluate the effects of different dietary protein levels and rumen-protected folic acid (RPFA) supplementation on ruminal fermentation, microbial enzyme activity, bacterial populations and urinary excretion of purine derivatives (PD) in growing beef steers. Low-protein (LP) or high-protein (HP) diets were fed to eight ruminally cannulated first-generation cross-bred (Blonde d'Aquitaine × Simmental) beef steers with or without RPFA supplementation. Steers were fed a total mixed ration, and dietary concentrate to maize silage ratio was 50 : 50 (dry matter (DM) basis). No interaction between dietary crude protein (CP) levels and RPFA supplementation was observed during the experiment. Ruminal pH was unaffected by RPFA supplementation, but decreased with increasing dietary CP levels. Ruminal total volatile fatty acid concentration increased with increasing dietary CP levels or RPFA supplementation. Molar proportion of acetate increased with RPFA supplementation, but tended to decrease with increasing dietary CP levels. The proportion of propionate decreased with RPFA supplementation, but was unaffected by dietary CP levels. As a result, the acetate to propionate ratio increased with RPFA supplementation, but tended to be lower for the HP diets than the LP diets. Ammonia-nitrogen content decreased with RPFA supplementation, but increased with increasing dietary CP levels.In situruminal degradability of maize straw and concentrate increased with increasing dietary CP levels or RPFA supplementation. Microbial enzyme (carboxymethyl-cellulase, cellobiase, xylanase, pectinase,α-amylase and protease) activity, bacterial populations (Ruminococcus albus,Ruminococcus flavefaciens,Butyrivibrio fibrisolvens,Prevotella ruminicola,Fibrobacter succinogenesandRuminobacter amylophilus) and urinary PD excretion increased with increasing dietary CP levels or RPFA supplementation. The current study showed that increasing dietary CP levels from 109·1 to 130·7 g/kg DM or supplementing 75 mg RPFA improved ruminal fermentation and microbial protein synthesis by increasing bacterial population and microbial enzyme activity.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3